FIRST SPHENIX JET-STRUCTURE MEETING

Dennis Perepelitsa and Rosi Reed

The charge

- RHIC ALD Berndt Mueller -> Plan for baseline design scope, cost, and schedule
 - Data taking in FY2022 RHIC
 - Plan to BNL management no later than May 31, 2016
 - Should not assume the availability of additional funding
 - Foreseen funding profile: "\$75M" in redirected funds
 - 3/25/16 sPHENIX Total Project Cost 81.37M AY\$
- What physics can we do with a \$75M sPHENIX?
- What physics would we miss out on?
- What do key observables look like under different detector configurations?

pCDR Statements (1 of 2)

- Jets The key to the physics is to cover jet energies of 20–70 GeV, for all centralities, for a range of jet sizes, with high statistics and performance insensitive to the details of jet fragmentation.
 - energy resolution < $120\%/\sqrt{E_{jet}}$ in p+p for R = 0.2-0.4 jets
 - energy resolution < 150%/ $\sqrt{E_{jet}}$ in central Au+Au for R = 0.2 jets
 - energy scale uncertainty < 3% for inclusive jets
 - energy resolution, including effect of underlying event, such that scale of unfolding on raw yields is less than a factor of three
 - jets down to R = 0.2 (segmentation no coarser than $\Delta \eta \times \Delta \varphi \sim 0.1 \times 0.1$)
 - underlying event influence event-by-event (large coverage HCal/EMCal)
 - Energy measurement insensitive to softness of fragmentation (quarks or gluons) — HCal + EMCal

pCDR Statements (2 of 2)

- Dijets The key to the physics is large acceptance in conjunction with the general require- ments for jets as above
 - > 80% containment of opposing jet axis
 - > 70% full containment for R = 0.2 dijets
 - R_{AA} and A_J measured with < 10% systematic uncertainty (also key in p+A, onset of effects)
- Fragmentation functions The key to the physics is unbiased measurement of jet energy
 - excellent tracking resolution out to > 40 GeV/c $(dp/p < 0.2\% \times p)$
 - independent measurement of p and E (z = p/E)

Experimental inputs

- Topical groups can not "reinvent" sPHENIX
 - We need input regarding efficiency, resolution, fake rate, etc from detector groups
 - Some coordination will be required
 - Common MC?
 - Detector focus from topical group-to-topical group
- We need input regarding detector configurations under different cost assumption
 - We will evaluate performance (efficiency, resolution, fake rate, etc.) for jet structure physics measurements
 - Important to have a few well-vetted results rather than many in various stages of completeness
 - After May 31st we can branch out

Short term plan

- We want to converge on a few crisp, relatively simple observables which demonstrate the effects of the differences between detector configurations
- Proposed signatures
 - Jet energy measurements
 - Charged hadron spectra
 - Fragmentation functions
 - Jet-track Correlations

Jet Energy Measurements

- Uncertainty on JES and JER affects all jet measurements
 - We desire small unfolding systematics
 - Need to be able to distinguish real jets from fakes
- For charged-jet energy checks
 - Tracking efficiency
 - Track fake rate effects results
 - Track-Calo matching

Charged hadron spectra

- At high p_T all charged hadrons should be associated with jets
 - Fake rate at low p_T
 - Uncertainty efficiency
- At low and moderate p_T jet matching is impossible in HI environment
 - Fake rate critical
 - Could be improved by track-to-calo cluster matching?

Fragmentation functions

- Uncertainty on JES/JER
- Tracking Uncertainty
- High-z measurements require good track and jet resolution
- Fake rate is reduced once "true" jets are selector
 - Calorimeter vetoes fake jets
 - Is it low enough?

Jet-track Correlations

Requires low fake rate

 Balance is achieved at low p_T

- JES/JER important
 - Di-jet imbalance
- Requires good efficiency and hermetic tracking coverage

Participation

- Code development for physics observables should occur in parallel to detector analysis
 - Detector groups need to inform us, but we can not wait weeks to start
 - We need volunteers!
 - Both fully simulated software frameworks and generators
 - + detector parameterizations useful
- Meetings will be called as needed
 - Coordinating schedules for ~15-20 people is difficult but results can be discussed as produced
- Let us know how you would like to join in!

Proposed Timing

15 April - 30 April

- develop code with private simulations
- discuss best plots

30 April

 Detector groups give us final geometry descriptions (we hope), generate "official" MC samples.

• 30 April - 18 May

- Make "official" plots
- make sure we understand then.

• 18-20 May

 Collaboration Meeting, circulate "official" plots widely for input from Collaboration.

• 20-31 May

 Coordinate with other topical groups & SPs to write document and message around plots

Conclusions

- Given the short timeline, best to work with a well defined goal and well defined observables
- "Official" Plots should be finalized by the collaboration meeting (May 18 – May 20)
- After May 31st we will pick a regular meeting time and expand the scope of the working group
- Next meeting time?